Разное




РазДЕЛЫ САЙТА

Боевики, детективы
Документалка
Драмы, триллеры
Исторические
Классическая эротика
Комедии
Мелодрамы
Мультяшки
Обучающее, познание
Приключения
Сказки, фэнтези
Старое, доброе
Ужасы
Фантастика
х х х х х х х х х
Блюз, джаз, соул
Инструментальная
Классическая
Клипы
Минусовки
Музыка игр и кино
Поп
Разная
Ретро
Рок, метал
Рэп, хип-хоп
Шансон
х х х х х х х х х
Автософт и навигация
Аудиокниги
Книги и журналы
Фото и видео, приколы



СЛучайные материалы

G.K. - Self-Made (2022)
G.K. - Self-Made (2022)

KÕNTS - sorba dreams (2021)
KÕNTS - sorba dreams (2021)

Канал на YouTube за 14 дней 2.0 (2022) PCRec
Канал на YouTube за 14 дней 2.0 (2022) PCRec

Руслан Скрынников - Три лжедмитрия. Самозванцы на царском троне
Руслан Скрынников - Три лжедмитрия. Самозванцы на царском троне

Книжная серия - «Кулинария. Домашний кондитер» (2020-2022)
Книжная серия - «Кулинария. Домашний кондитер» (2020-2022)


Главная » 2019 » Январь » 16 » Теория и практика машинного обучения

Теория и практика машинного обучения

16:15

Теория и практика машинного обучения — Учебное пособие рассматривает вопросы, связанные с анализом данных: модели, алгоритмы, методы и их реализацию на языке Python. Особое внимание уделено анализу временных рядов.
С теоретической стороны машинное обучение – дисциплина, находящаяся на пересечении математической статистики, численных методов оптимизации, теории вероятностей, а также дискретного анализа. С помощью ее методов происходит решение задачи извлечения знаний из данных, которой занимается еще только формирующаяся область «Интеллектуальный анализ данных» (DataMining).
С практической же стороны машинное обучение нацелено на создание систем, способных адаптироваться к решению различных задач без явного кодирования алгоритма, то есть систем, способных обучаться.
В последних разделах книги обучающемуся предлагаются контрольные вопросы по пройденным темам, а также задачи для выполнения, с помощью которых он сможет проверить себя и закрепить полученные навыки.
Книга предназначена для студентов группы направлений 09, а также для студентов других групп направлений, изучающих дисциплины, связанные с разработкой приложений в области анализа данных, в том числе TimeSeriesDataMinig и DataMining.

Название: Теория и практика машинного обучения
Автор: Воронина В. В., Михеев А. В., Ярушкина Н. Г.
Издательство: УлГТУ
Год: 2017
Страниц: 290
Формат: PDF, DJVU
Размер: 10,95 МБ
ISBN: 978-5-9795-1712-4
Качество: отличное

Содержание:

Введение
Задачи машинного обучения
Пространство признаков
Формальное определение понятия «обучение»
Общий алгоритм машинного обучения
Типы задач машинного обучения
Способы обучения и оценки его качества
Типовые задачи при подготовке данных и обучении моделей
Учет пропусков
Кодирование нечисловых признаков
Приведение данных к единому масштабу и стандартизация
Разметка данных
Переобучение
Модели и алгоритмы машинного обучения
Методы теории вероятностей
Деревья решений
Статистические модели и методы
Модели и методы нечеткой логики
Нечеткие множества
Лингвистические переменные
Операции нечеткой логики
Нечеткие системы
Нечеткая логика в анализе временных рядов
Метод моделирования нечетких временных рядов
Пример моделирования временного ряда в нечетком подходе
Извлечение знаний из временных рядов
Нечеткое сглаживание временного ряда
Нечеткая регрессия
ACL-шкала и нечеткая кластеризация объектов
Искусственные нейронные сети
Особенности нейронных сетей
Определение модели искусственной нейронной сети
Первая формальная модель и первая реализация нейронной сети
Многослойный персептрон (MLP)
Сверточные (ConvolutionalNeuralNet) и Глубокие (DeepNet) Сети
Карты (ART, SFAM)
Рекуррентные сети (Recurrent Neural Network)
Самоорганизующиеся карты (Self-organization map, SOM)
Автокодировщики (AutoEncoder)
Импульсные (Спайковые) сети
Причины бурного развития ИНС сегодня
Борьба с переобучением в ИНС
Обратное распространение ошибки
Нечеткие нейронные сети
Генетические алгоритмы
Нечеткие системы с генетической настройкой
Нечеткие нейронные сети с генетическим проектированием
Генетическая оптимизация F-преобразования временных рядов
Разработка приложений в сфере машинного обучения
Основы работы с Python
Элементарные операции с данными
Работа с DataFrame
Предобработка данных. Стандартизация и нормализация
Работа с деревьями решений
Сохранение и загрузка обученной модели
Работа с логистической регрессией
Решение задачи ранжирования признаков
Работа с полиномиальной регрессией
Работа с простейшими моделями нейронных сетей
Реализация алгоритма обучения нейронной сети
Регуляризация и сеть прямого распространения
Работа с библиотеками Keras и Theano. Настройка под Windows
Получение данных средствами Keras
Создание и обучение модели сверточной сети
Загрузка и сохранение сложных моделей
Рекуррентные сети для прогнозирования временных рядов
Контрольные вопросы и тестовые задания
Тест «Общие сведения о машинном обучении»
Проблема переобучения
Регрессия
Модели и методы нечеткой логики
Нечеткие временные ряды
Нечеткая регрессия
Генетические алгоритмы
Нечеткая кластеризация
Искусственные нейронные сети и глубинное обучение
Тест «Искусственные нейронные сети»
Практические задания
Работа с файлом данных Титаника
Работа по отбору признаков
Многослойный персептрон
Реализация алгоритма обратного распространения ошибки
Регуляризация и сеть прямого распространения
Сравнение эффективности моделей из библиотеки Keras
Работа с библиотекой OpenCV
Нечеткая логика
Генетические алгоритмы
Нечеткая кластеризация объектов
Анализ временных рядов
Работа с рекуррентными сетями
Заключение
ссарий
Предметный указатель
Библиографический список

Скачать Теория и практика машинного обучения

Скачать с turbobit.net
Скачать с katfile.com
Скачать с www.up-4.net
Скачать с file-up.org

Скачать: Книги и журналы | Теги: Михеев, обучения, 2017, машинного, Воронина, практика, теория

Похожие материалы скачать бесплатно и без регистрации


К "Теория и практика машинного обучения" пока нет комментариев, но Вы можете стать первым, кто его оставит!

Всего мнений: 0
avatar
Ищу на сайте

Случайный анекдот
У психиатра.
- Доктор,..гав.. мне кажется,.. гав-гав.. что я собака!
- Тэкс! Ложитесь на кушетку, я вас осмотрю!
- Что вы...гав..мне нельзя на мебель.. гав-гав..!!!

Новое на сайте
Пока, к сожалению, ничего нет

Наша статистика

Присутствуют: 2
Неизвестных: 2
Знакомых: 0
Copyright by Anonimus © 2022